
NDK+OFM:
Rapid Development of Accelerated
Applications for FPGA SmartNICs

Jiří Matoušek, Daniel Kondys
CESNET

8 May 2023 (at FCCM 2023 in Los Angeles, CA, USA)

TUTORIAL ORGANIZERS

■ Jiří Matoušek
■ researcher at CESNET

■ assistant professor at FIT BUT (Brno, Czech Republic)

■ Daniel Kondys
■ developer in FPGA R&D team at CESNET

■ Jakub Cabal
■ head of the FPGA R&D team at CESNET

CESNET

■ CESNET is an association of universities of the Czech
Republic and the Czech Academy of Sciences

■ Operates and develops the national e-infrastructure for
science, research and education which encompasses
■ computer network

■ computational grids

■ data storage

■ collaborative environment

LIBEROUTER TEAM

a.k.a. Security and Administration Tools Department at CESNET

■ More than 60 people in R&D (about 28 FTE)

■ Cooperation with universities (CTU, BUT) and students

■ Applied research and tools based on unique technology
■ hardware acceleration

■ network monitoring & traffic analysis

■ Cyber Threat Intelligence

■ DDoS mitigation

■ configuration tools

RESULTS AND SUCCESS STORIES

■ One of the first 100 Gb FPGA acceleration cards
■ Czech Head Prize 2016 - Industrie award

■ NETCONF tools awarded by ONF
■ now used by telco operators in the network infrastructure

■ P4 compiler for FPGAs acquired by Intel

■ Flowmon Networks spin-off acquired by Kemp
■ founded in 2007 based on the research results of Scampi and

Geant projects (Netflow/IPFIX probes)

■ DDoS mitigation system deployed by NIX

■ What is your experience with FPGA SmartNICs?

■ Why did you register for this tutorial?

■ What are your expectations?

■ What would you like to take away?

WHAT ABOUT YOU?

AGENDA

■ [presentation] NDK Introduction

■ [presentation] ndk-app-minimal Introduction

■ [hands-on] Playing with ndk-app-minimal

■ [lunch break]

■ [presentation] OFM Introduction

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

NDK Introduction

[presentation]

MOTIVATION

■ Growing number of available/deployed FPGA SmartNICs
■ Intel, AMD/Xilinx, Cisco, Napatech, Silicom, BittWare, etc.

■ Need for rapid development of applications targeting
these devices

■ Common low-level operations on FPGA SmartNICs
■ transmitting/receiving data via network interface (typically Ethernet)

■ transmitting/receiving data via host interface (typically PCIe)

■ writing/reading data via external memory interface (typically DDR)

■ Implementation of low-level operations is difficult for users

https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.napatech.com/products/
https://www.silicom-usa.com/cats/fpga-based-cards/
https://www.bittware.com/fpga/

NDK

■ Network Development Kit (NDK)
■ open-source framework for fast and easy development of accelerated

applications for FPGA SmartNICs

■ based on 20+ years of active research and development at CESNET

■ NDK key features
■ support for high-speed network interfaces (up to 400 GbE)

■ support for high-speed host interfaces (up to PCIe gen5 x16)

■ ready-to-use software stack (driver, library, tools) and API (C, Python)

■ Data Plane Development Kit (DPDK) support

■ single make command to create the entire FPGA bitstream

https://www.liberouter.org/ndk/

NDK OVERVIEW

FPGA DESIGN ARCHITECTURE

■ FPGA architecture modules

■ user application (e.g., minimal)
(not part of NDK)

■ network module (e.g., F-Tile)

■ DMA module (e.g., Medusa)
(not open-source)

■ PCIe module (e.g., R-Tile)

■ memory controller (e.g., DDR4)

■ timestamp generator

■ C/S registers interconnect

https://cesnet.github.io/ndk-app-minimal/main/ndk_core/intel/readme.html

SUPPORTED FPGA CARDS

■ NDK FPGA design architecture is divided into
■ common part same for all supported FPGA cards (ndk-core)

■ specific part for each supported FPGA card

■ Supported FPGA cards
■ ReflexCES XpressSX AGI-FH400G (ndk-card-agi-fh400g)

■ Intel Stratix 10 DX FPGA Development Kit (ndk-card-dk-dev-1sdx-p)

■ Intel Agilex I-Series FPGA Development Kit (ndk-card-dk-dev-agi027res)

■ Silicom fb4CGg3@VU9P and fb2CGg3@VU9P (both in ndk-card-fb4cgg3)

■ Silicom fb2CGhh@KU15P (ndk-card-fb2cghh)

■ Bittware IA-420F card (ndk-card-ia-420f)

https://github.com/CESNET/ndk-core/
https://github.com/CESNET/ndk-card-agi-fh400g/
https://github.com/CESNET/ndk-card-dk-dev-1sdx-p/
https://github.com/CESNET/ndk-card-dk-dev-agi027res/
https://github.com/CESNET/ndk-card-fb4cgg3/
https://github.com/CESNET/ndk-card-fb2cghh/
https://github.com/CESNET/ndk-card-ia-420f/

FURTHER FIRMWARE PARTS OF NDK

■ Various basic modules for FPGA designs (ofm)
■ see OFM Introduction part of this tutorial

■ Minimal/reference NDK application (ndk-app-minimal)
■ see ndk-app-minimal Introduction part of this tutorial

■ Build system for easy simulation/verification, synthesis,
implementation, and bitstream generation (ofm/build)
■ see Advanced Topics part of this tutorial

https://github.com/CESNET/ofm/
https://github.com/CESNET/ndk-app-minimal/
https://github.com/CESNET/ofm/tree/devel/build

SOFTWARE STACK

■ Software stack components

■ Linux kernel driver
(nfb = NDK FPGA board)

■ userspace library with C/Python API
(libnfb)

■ NDK SW tools

■ DPDK driver

■ user application (not part of NDK)

https://cesnet.github.io/ndk-sw/index.html

CONFIGURATION SW TOOLS

■ nfb-tools (nfb = NDK FPGA board)

■ Tools to read/write configuration and status data
via CSR bus
■ nfb-info – basic info about card and current design

■ nfb-boot – load bitstream into card

■ nfb-eth – configure/read status of network module

■ nfb-dma – configure/read status of DMA module

■ nfb-tsu – configure timestamp generator

■ nfb-bus – configure/read status of arbitrary register

https://cesnet.github.io/ndk-sw/tools/nfb-tools.html

DATA TRANSFER SW TOOLS

■ ndp-tools (ndp = NDK Data Plane)

■ Tools to read/write packet data using DMA
■ ndp-read – read packets from FPGA

■ ndp-generate – send generated packets to FPGA

■ ndp-receive – read packets from FPGA into PCAP

■ ndp-transmit – send packets from PCAP to FPGA

■ ndp-loopback – read packets from FPGA and send
them back

https://cesnet.github.io/ndk-sw/tools/ndp-tools.html

NDK SW PACKAGES

■ RPM packages available via COPR
sudo dnf copr enable @CESNET/nfb-framework

sudo dnf install nfb-framework python3-nfb

■ nfb driver

■ libnfb library (including C and Python API)

■ both nfb-* and ndp-* tools

■ NDK software can also be built from sources (ndk-sw)
■ follow Build instructions in README.md

■ DPDK driver available via mainline DPDK repository

https://copr.fedorainfracloud.org/coprs/g/CESNET/nfb-framework/
https://github.com/CESNET/ndk-sw/
https://github.com/CESNET/ndk-sw#build-instructions
http://core.dpdk.org/download/

DESCRIPTION OF HW FOR SW

■ Design in FPGA is characterized using DeviceTree (DT)
■ build system composes DT string (dts) and translates it to DT blob

(dtb), which is stored in the design and can be read from software

■ DTS example
ref_name: my_comp {

 reg = <$BASE_ADDRESS 0x40>;

 compatible = "netcope,my_comp";

 version = <0x00010004>;

 type = "reduced";

};

https://cesnet.github.io/ndk-app-minimal/main/ndk_core/doc/devtree.html

EXAMPLES OF NDK APPLICATIONS

■ Precise network monitoring
■ flow monitoring with deep packet inspection

■ Network security applications
■ IDS/IPS acceleration - Suricata pre-filter and bypass

■ Anti DDoS - mitigation of volumetric attacks

■ High-frequency trading
■ algorithmic trading with very low response delay

■ And many others…

RELATED PUBLICATIONS

■ J. Cabal, J. Sikora, Š. Friedl, M. Špinler, and J. Kořenek, "FPL Demo:
400G FPGA Packet Capture Based on Network Development Kit," FPL
2022, pp. 474-474, doi: 10.1109/FPL57034.2022.00090.

■ J. Kubálek, J. Cabal, M. Špinler, and R. Iša, "DMA Medusa: A
Vendor-Independent FPGA-Based Architecture for 400 Gbps DMA
Transfers," FCCM 2021, pp. 258-258, doi:
10.1109/FCCM51124.2021.00045.

■ L. Kekely, J. Cabal, V. Puš and J. Kořenek, "Multi Buses: Theory and
Practical Considerations of Data Bus Width Scaling in FPGAs," DSD
2020, pp. 49-56, doi: 10.1109/DSD51259.2020.00020.

https://ieeexplore.ieee.org/document/10035175
https://ieeexplore.ieee.org/document/10035175
https://ieeexplore.ieee.org/document/9444087
https://ieeexplore.ieee.org/document/9444087
https://ieeexplore.ieee.org/document/9444087
https://ieeexplore.ieee.org/document/9217811
https://ieeexplore.ieee.org/document/9217811

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction

■ [hands-on] Playing with ndk-app-minimal

■ [lunch break]

■ [presentation] OFM Introduction

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

ndk-app-minimal Introduction

[presentation]

NDK-APP-MINIMAL

■ ndk-app-minimal represents simple example of NDK-based
FPGA application
■ possible starting point for user-defined FPGA applications based on NDK

■ Does not process network packets, just routes them
through application core

■ Documentation
■ The Application section within NDK Architecture

■ Minimal NDK application

https://www.google.com/url?q=https://github.com/CESNET/ndk-app-minimal/&sa=D&source=editors&ust=1683496187054805&usg=AOvVaw1wUdQoWX4QBXnVj3g-Pgfl
https://cesnet.github.io/ndk-app-minimal/main/ndk_core/intel/doc/app.html#
https://cesnet.github.io/ndk-app-minimal/main/app-minimal.html#

THE APPLICATION

■ ETH streams
■ MVB+MFB interfaces

■ DMA streams
■ MVB+MFB interfaces

■ APP registers interface
■ MI interface

■ EMIF interfaces
■ Avalon-MM interfaces

■ Clock INs and OUTs

THE APPLICATION

■ The application interfaces
■ details of data format can be found in documentation

■ proprietary interfaces MVB, MFB, and MI will be introduced in OFM
Introduction part of this tutorial

■ DMA Streams Merger + DMA Chan Mod
■ deal with situation when ETH streams ≠ DMA streams

■ MI Async
■ clock-domain-crossing unit for MI interface

https://cesnet.github.io/ndk-app-minimal/main/ndk_core/intel/doc/app.html#

MINIMAL NDK APPLICATION

■ Single Base
Application Subcore
per ETH stream

■ Single Memory Tester
per EMIF interface

■ Separate MI interface
for each
■ Base Application Subcore

■ Memory Tester

MINIMAL NDK APPLICATION

■ MFB only TX ETH
interfaces
■ other interfaces utilize

MVB+MFB

■ TX direction channels
(DMA→ETH)
■ Static mapping

■ RX direction channels
(ETH→DMA)
■ Dynamic mapping (configurable

by user)

NDK-APP-MINIMAL REPOSITORY

■ ndk-app-minimal integrates all other NDK repositories
■ app/ implementation of application
■ build/ build scripts for supported FPGA cards
■ conf/ build system configuration
■ doc/ documentation system + top-level documentation
■ ndk/ NDK platform sources (multiple repositories)

■ cards/ top-level designs for supported FPGA cards
(e.g., ndk-card-agi-fh400g)

■ core/ common NDK core (ndk-core)
■ modules/ special modules and IPs (e.g., ndk-mod-dma-medusa)
■ ofm/ Open FPGA Modules - basic components and build system (ofm)

■ tests/ test scripts for Jenkins, etc.

■ note that NDK cannot be built without application core

https://github.com/CESNET/ndk-app-minimal/

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal

■ [lunch break]

■ [presentation] OFM Introduction

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

Playing with ndk-app-minimal

[hands-on]

1. Start provided VirtualBox VM

2. Open terminal

3. Connect via SSH to given “preklad” server using given credentials
■ ssh tutorial{1-5}@preklad{11-13, 21-24}.liberouter.org

CONNECTION SETUP

4. Read through “How to start” section of ndk-app-minimal
README.md

5. Clone ndk-app-minimal repository with at least ofm, core, and
agi-fh400g submodules
■ git clone https://github.com/CESNET/ndk-app-minimal.git
■ cd ndk-app-minimal
■ git submodule update --init ndk/ofm
■ git submodule update --init ndk/core
■ git submodule update --init ndk/cards/agi-fh400g

CLONING REPOSITORIES

https://github.com/CESNET/ndk-app-minimal#how-to-start
https://github.com/CESNET/ndk-app-minimal
https://github.com/CESNET/ofm/
https://github.com/CESNET/ndk-core/
https://github.com/CESNET/ndk-card-agi-fh400g/

6. Read through “How to start” section of ndk-app-minimal
documentation

7. Build default ndk-app-minimal design for agi-fh400g card
■ cd build/agi-fh400g
■ make

8. In the meantime, study details of Gen Loop Switch module (next
slide) and read through “NDK testing” section of ndk-app-minimal
documentation

BUILDING DESIGN

https://cesnet.github.io/ndk-app-minimal/main/ndk_core/doc/how_to_start.html#how-to-start
https://cesnet.github.io/ndk-app-minimal/main/ndk_core/doc/testing.html#

■ Module for easy debugging and measurements of FPGA designs
■ documentation available for instance as part of ndk-app-minimal documentation

■ Basic features
■ two configurable packet generation modules

■ two configurable loopback paths

■ four units for throughput measurements

■ By default, GLS module is enabled in ndk-app-minimal

■ GLS operation can be controlled using available Python script

GEN LOOP SWITCH (GLS)

https://cesnet.github.io/ndk-app-minimal/main/ofm_doc/comp/mfb_tools/debug/gen_loop_switch/readme.html
https://github.com/CESNET/ofm/blob/devel/comp/mfb_tools/debug/gen_loop_switch/sw/gls_mod.py

BOOTING DESIGN

9. Once the demo server Solaris is available, ask Daniel Kondys for
supervision

10. Use nfb-boot tool to load default ndk-app-minimal design into 400G
FPGA card in Solaris server
■ nfb-boot -f0 your_ndk_firmware.nfw

11. Use nfb-info tool for verification of successful design booting
■ nfb-info

TESTING AND MEASURING DESIGN

12. Test R/W access to the scratch registers
■ nfb-bus -p /firmware/mi_bus0/mi_test_space <address>

■ nfb-bus -p /firmware/mi_bus0/mi_test_space <address> <data>

■ nfb-bus -p /firmware/mi_bus0/mi_test_space <address>

13. Enable Network Module in “PMA local loopback mode”
■ nfb-eth -Pc "+PMA local loopback"

■ nfb-eth -e1

14. Measure ndk-app-minimal throughput using GLS module
■ python3 gls_mod.py 1

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

[lunch break]

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

OFM Introduction

[presentation]

OFM

■ Open FPGA Modules (OFM)
■ open-source library of basic FPGA modules for (not only) high-speed

processing of data

■ heavily utilized in NDK and ndk-app-minimal

■ based on 20+ years of active research and development at CESNET

■ Most common interfaces of modules within OFM
repository
■ multi buses (MFB, MVB)

■ memory interface bus (MI)

https://github.com/cesnet/ofm

MULTI BUSES

■ New generation of highly parametric proprietary buses

■ Key benefit: support for multiple packets per clock cycle
■ necessary for processing 400G Ethernet data streams in FPGA

■ Two different buses that are often used together
■ Multi-Frame Bus (MFB): designed for transfers of packet data

■ Multi-Value Bus (MVB): designed for transfers of (packet) meta-data

■ Available documentation introduces MFB and MVB very well
■ MFB specification

■ MVB specification

https://cesnet.github.io/ofm/comp/mfb_tools/readme.html
https://cesnet.github.io/ofm/comp/mvb_tools/readme.html

MEMORY INTERFACE BUS

■ Memory Interface Bus (MI bus)
■ low-performance bus for SW access to control/status registers and memories

■ sometimes mentioned as MI32 bus (due to its default data width of 32 bits)

■ Available documentation introduces MI bus very well
■ MI bus specification

https://cesnet.github.io/ofm/comp/mi_tools/readme.html

BASIC COMPONENTS (TOOLS)

■ set of basic components for use with common buses
■ implementation: comp/mfb_tools, comp/mvb_tools, comp/mi_tools, etc.

■ documentation: MFB Tools, MVB Tools, MI Tools, etc.

■ not all components are documented!

■ similar components stored together within each group
■ data flow transformations (flow)

■ data storage (storage)

■ debugging (debug)

■ etc.

https://github.com/CESNET/ofm/tree/devel/comp/mfb_tools
https://github.com/CESNET/ofm/tree/devel/comp/mvb_tools
https://github.com/CESNET/ofm/tree/devel/comp/mi_tools
https://cesnet.github.io/ofm/mfb.html
https://cesnet.github.io/ofm/mvb.html
https://cesnet.github.io/ofm/mi.html

BASIC COMPONENTS (BASE)

■ set of basic components for general use
■ implementation: comp/base

■ documentation: Basic Tools (not all components are documented!)

■ some components are optimized for specific FPGA architecture(s)

■ similar components stored together
■ combinatorial logic (logic)

■ shift registers (shreg)

■ general (mem) and FIFO (fifo) memories

■ etc.

https://github.com/CESNET/ofm/tree/devel/comp/base
https://cesnet.github.io/ofm/base.html

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction 🗹

■ [hands-on] Implementing Custom NDK Application

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

Implementing Custom NDK Application

[hands-on]

HANDS-ON TASK

MFB_FRAME_CNT

MI_SPLITTER
_PLUS_GEN

HIGH-LEVEL ASSIGNMENT

■ Extend ndk-app-minimal with 64-bit counter of RX MFB frames
■ use MFB_FRAME_CNT (not documented) from ofm/mfb_tools directory

■ Make the counter value accessible via MI bus at address offset 0x100
from Base Application Subcore base address
■ use MI_SPLITTER_PLUS_GEN to split address space of Base Application

Subcore between MVB_CHANNEL_ROUTER_MI and MFB_FRAME_CNT

■ Make sure to edit all relevant files
■ app/top/app_subcore.vhd

■ app/top/Modules.tcl

■ app/top/DevTree.tcl

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction 🗹

■ [hands-on] Implementing Custom NDK Application 🗹

■ [presentation] SW API Introduction

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

SW API Introduction

[presentation]

NDK SW API

■ NDK userspace library provides two APIs for user applications
■ C API: native libnfb API

■ Python API: Cython-based libnfb API

■ Typical use cases of C API
■ applications with high-performance requirements

■ NDK SW tools (both nfb-tools and ndp-tools)

■ Typical use cases of Python API
■ majority of user applications

■ testing/debugging scripts

■ Comprises two sets of API functions
■ Base API: basic operations over NFB (init/deinit, registers read/write, etc.)

■ NDP API: manipulation of high-speed queues for packet transmissions

■ Further materials
■ quick start guides as well as complete examples for both Base and NDP API

■ example use of Base and NDP API in nfb-tools and ndp-tools, respectively

C API

https://cesnet.github.io/ndk-sw/libnfb-api-base.html
https://cesnet.github.io/ndk-sw/libnfb-api-ndp.html
https://cesnet.github.io/ndk-sw/quick-start.html
https://cesnet.github.io/ndk-sw/libnfb-example.html
https://github.com/CESNET/ndk-sw/tree/main/tools
https://github.com/CESNET/ndk-sw/tree/main/tools/ndptool

C API EXAMPLES

■ Base API example
#include <nfb/nfb.h>

int main(int argc, char *argv[]) {
 struct nfb_device *dev = nfb_open("0");

 int node = nfb_comp_find(dev, "netcope,rxmac", 0);
 struct nfb_comp *comp = nfb_comp_open(dev, node);

 const int RXMAC_EN = 0x20;
 int en = nfb_comp_read32(comp, RXMAC_EN) & 0x01;
 if (!en)
 nfb_comp_write32(comp, RXMAC_EN, 0x01);

 nfb_comp_close(comp);
 nfb_close(dev);
 return 0;
}

■ NDP API example
#include <nfb/nfb.h>
#include <nfb/ndp.h>

int main(int argc, char *argv[]) {
 struct nfb_device *dev = nfb_open("0");

 struct ndp_queue *txq = ndp_open_tx_queue(dev, 0);
 ndp_queue_start(txq);

 struct ndp_packet packet = {.data_length = 128,
 .header_length = 16};
 ndp_tx_burst_get(txq, &packet, 1);
 packet.data[14] = 0x08;
 ndp_tx_burst_flush(txq);

 ndp_close_tx_queue(txq);
 nfb_close(dev);
 return 0;
}

■ Work-in progress, but already useable for real applications
■ basic operations over NFB

■ manipulation of high-speed queues for packet transmissions

■ ethernet port manipulation

■ Aims to provide at least the same functionality as C API

■ Documentation is to be published in the near future, however
■ complete examples are already available within ndk-sw repository

■ OFM contains handful or real use cases: Memory Tester, Rate Limiter, etc.

PYTHON API

https://github.com/CESNET/ndk-sw/tree/main/pynfb/examples
https://github.com/CESNET/ofm/blob/devel/comp/debug/mem_tester/sw/mem_tester.py
https://github.com/CESNET/ofm/blob/devel/comp/mfb_tools/flow/rate_limiter/sw/rate_limiter.py

PYTHON API EXAMPLES

■ Basic example
import nfb

dev = nfb.open()

node = dev.fdt_get_compatible("netcope,eth")[0]
phandle = node.get_property("rxmac").value
node = dev.fdt_get_phandle(phandle)

comp = dev.comp_open(node)

RXMAC_EN = 0x20
en = comp.read(RXMAC_EN) & 0x01
if (not en):
 comp.write(RXMAC_EN, 0x01)

■ Data transfer example
import nfb

dev = nfb.open()
ndp = dev.ndp

txq = ndp.tx[0]
txq.start()

pkt = bytes([0]*128)
hdr = bytes([0]*16)
txq.send([pkt], hdrs=hdr)

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction 🗹

■ [hands-on] Implementing Custom NDK Application 🗹

■ [presentation] SW API Introduction 🗹

■ [hands-on] Controlling NDK Application from SW

■ [presentation] Advanced Topics

Controlling NDK Application from SW

[hands-on]

■ Test extended ndk-app-minimal using GLS module in mode 1
■ use design from “Implementing Custom NDK Application” hands-on session

■ follow the same steps as in “Playing with ndk-app-minimal” hands-on session

■ Read out the number of packets generated in GLS module
■ nfb-bus -p /firmware/mi_bus0/dbg_gls0/mfb_gen2eth 0x20

■ Read out the number of packets observed by counter of RX MFB
frames in Base Application Subcore
■ nfb-bus -p /firmware/mi_bus0/application/app_core_minimal_0/<name> 0x0

■ Compare numbers read out from GLS module and RX MFB frame
counter

CONTROLLING VIA EXISTING TOOLS

■ Implement Python script that performs the same operations as
specified on the previous slide

■ Useful Python API examples
■ 01-basics.py

■ 03-eth.py

■ Not all operations can be done via Python API
■ where necessary, use module os allowing to execute command in subshell

CONTROLLING VIA PYTHON API

import os
os.system(<command>)

https://github.com/CESNET/ndk-sw/blob/main/pynfb/examples/01-basics.py
https://github.com/CESNET/ndk-sw/blob/main/pynfb/examples/03-eth.py
https://docs.python.org/3/library/os.html

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction 🗹

■ [hands-on] Implementing Custom NDK Application 🗹

■ [presentation] SW API Introduction 🗹

■ [hands-on] Controlling NDK Application from SW 🗹

■ [presentation] Advanced Topics

Advanced Topics

[presentation]

■ Set of scripts for simple simulation, verification, synthesis, and
implementation of individual modules as well as full applications
■ Tcl scripts for controlling EDA tools

■ Makefile scripts for tasks automation

■ Available within OFM repository
■ implementation

■ documentation

■ Key elements from user’s perspective
■ definition of module’s sources within Modules.tcl file

■ scripts for individual modules/applications (directories sim, uvm, synth, etc.)

BUILD SYSTEM

https://github.com/CESNET/ofm/tree/devel/build
https://cesnet.github.io/ofm/build/readme.html
https://cesnet.github.io/ofm/build/readme.html#hierarchy-description-in-modules-tcl

■ Simulation based on advanced testing techniques
■ constrained pseudo-random generation of test vectors

■ analysis of functional coverage

■ invariants definition and checking

■ scoreboarding

■ OFM provides infrastructure for functional verification according
to UVM (Universal Verification Methodology)
■ implementation

■ documentation

FUNCTIONAL VERIFICATION

https://github.com/CESNET/ofm/tree/devel/comp/uvm
https://cesnet.github.io/ofm/ver.html

■ Documentation of NDK platform and OFM modules is compiled
from sources using Sphinx

■ VHDL sources are compiled using Sphinx-vhdl extension
■ implementation

■ documentation

■ Two modes of documentation building
■ automatic (default)

■ manual

DOCUMENTATION

https://www.sphinx-doc.org/en/master/
https://github.com/CESNET/sphinx-vhdl
https://cesnet.github.io/sphinx-vhdl/

AGENDA

■ [presentation] NDK Introduction 🗹

■ [presentation] ndk-app-minimal Introduction 🗹

■ [hands-on] Playing with ndk-app-minimal 🗹

■ [lunch break]

■ [presentation] OFM Introduction 🗹

■ [hands-on] Implementing Custom NDK Application 🗹

■ [presentation] SW API Introduction 🗹

■ [hands-on] Controlling NDK Application from SW 🗹

■ [presentation] Advanced Topics 🗹

[Q&A session]

THANK YOU FOR YOUR ATTENTION

