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Abstract—Recent work on FPGA hardware security showed a
substantial potential risk through power-hammering, which uses
high switching activity in order to create excessive dynamic power
loads. Virtually all present power-hammering attack scenarios
are based on some kind of ring oscillators for which mitigation
strategies exist. In this paper, we use a different strategy to create
excessive dynamic power consumption: glitch amplification. By
carefully designing XOR trees, fast switching wires can be
implemented that, while driving high fan-out nets, can draw
enough power to crash an FPGA. In addition to the attack (which
is crashing an Ultra96 board), we will present a scanner for
detecting malicious glitch amplifying FPGA designs.

I. INTRODUCTION

The rise of FPGAs used in cloud computing can be observed

in recent years when major cloud vendors such as Amazon,

Microsoft, Huawei, and Alibaba [1]–[4] started offering FPGA

instances to customers. Meanwhile, multi-tenancy support for

FPGA infrastructures in which more than one user can share

the same FPGA resource is desirable and, hence, attracting

research both in academia [5] and industry [6].

In FPGA cloud computing multi-tenant scenarios, system

security is of paramount importance. Security concerns range

from data privacy of users sharing the same FPGA resources

to the availability of the system service itself [7]. Integrating

FPGA resources into a cloud computing infrastructure is

opening a new surface of attack at the electrical level, which

is not available in the software world with CPUs and GPUs,

and therefore, has not been well-studied yet. For example,

a grid of ring oscillators can bring down an entire FPGA

board that needs to be power-cycled to get back the normal

operation [8]. Such an attack, known as power-hammering, is

a specific threat for FPGAs due to their full low-level hardware

programmability. Power-hammering is the process of creating

excessive power, commonly with the intend to compromise

integrity, confidentiality, or availability of a system.

Currently, all power-hammering circuits are built upon

ring oscillators, which may or may not be detected by the

vendor design rule checking (DRC) [9], [10]. However, the

fundamental principle behind this class of attack is to create a
circuit with high switching activity that can consume as much
power as possible to create voltage drops or to exceed the
board power or thermal budget. Therefore, as an alternative

to ring oscillators, it is possible to use well-designed XOR

trees to generate a significant amount of switching activities

(a.k.a glitches), which currently are not flagged by DRCs.
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Fig. 1. Illustrations of the presented glitch amplification attack with (a) the
attack circuit, and (b) the waveform got from the attack circuit shown.

With help from academic tools such as GoAhead [11]

or RapidWright [12], we can fine-tune input delays inside

XOR trees to achieve the desired toggling frequency. Vendor

tools can do this just as well, but for this paper, we used

GoAhead because it allows searching for multiple routing

paths ranked by latency. While other logic functions may glitch

as well, XOR is most effective as any change at any of the

inputs creates a change at the XOR output (omitting possible

canceling effects in real systems). In our research, the output

of a glitch generator will be used to drive an extensive network

of wires and combinatorial logic, which is acting as the power-
burning network, as illustrated in Fig. 1. As we will show in

Section IV, this allows creating a power-hammering attack at

a small cost that can crash an FPGA board.

In this paper, for the first time, such malicious circuits,

which can crash a Xilinx UltraScale+ FPGA board just by

using a glitch generator and a power-burning network, are

presented. The presented malicious circuits pass all Vivado

DRCs (version 2019.1) for bitstream generation as well as all

tests that are performed to deploy designs on Amazon Web

Services F1 instances. It is necessary to highlight that the

Power Estimation feature provided in the Vivado design tool

is remarkably underestimating the potential power consumed

by the proposed circuits. Hence the Xilinx vendor tools cannot

currently prevent such an attack. As a mitigation for the attack,

we have extended our open-source tool FPGADefender [13]

by providing additional functions to detect possibly excessive

switching activity. The test is performed directly on bitstreams

generated by the Xilinx vendor tool.

The threat model considers an adversary with complete or
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partial access to FPGA fabric via full or partial reconfiguration.

The adversary goals are to shut down the FPGA service

of an FPGA-based system (e.g., embedded or cloud-based),

and hence to cause a denial of service in the system or

to manipulate system states by temporarily reducing supply

voltage below safe operating conditions. The here presented

attack can also serve as a template for FPGA hardware trojans

in the sense that the attack requires only a little amount of

logic, passes all existing DRCs but can crash a large amount

of FPGA-based systems.

The contributions of this work are as follows:

• A new class of power-hammering attack based on glitch

amplification that does not use oscillators (Section III);

• An extension to the tool FPGADefender to mitigate this

new class of attack on FPGA boards (Section IV);

• Demonstration of the presented attack on the Ultra96 plat-

form equipped with the Xilinx Zynq UltraScale+ MPSoC

and evaluation of our mitigation strategy (Section V).

Moreover, we provide a brief literature review in Section II

and conclude this work in Section VI.

II. BACKGROUND AND RELATED WORK

There are two power sources in FPGAs: static and dynamic

power. Dynamic power can be calculated using the following

formula [14]:

P =
∑

all nodes

α×D(y)× Cy × V 2 × f (1)

Here, the capacitance Cy and the transition density D(y)
at each node y affect the dynamic power consumption with

the swinging voltage V and clock frequency f . The α factor

represents the static probability of a signal changing. α can be

adjusted to reflect the specific use-case scenarios. When the

transition density at a node is higher than one, then the node

can switch its value more often than the clock signal. This is

a result of glitching. The glitching of static CMOS circuits in

ASIC is previously studied, concluding that it may contribute

to 20% to 70% of power dissipation [15]. Furthermore, most

of the FPGA dynamic power is consumed by the routing

resources [16], [17] due to their large capacitive load.

The fact that the routing resources consume the most

power and that there is a high possible power dissipation

from glitches means that this can be exploited for power-

hammering. The transition density is primarily affected by

input states, the architecture of a circuit, and its exact physical

implementation on the FPGA. This means that an implemented

netlist could be designed to be malicious enough to create a

temporary voltage drop that may manipulate a system (e.g.,

causing a state transition due to making a system timing-

critical) [18] or to even crash the system entirely.

Although many power models take the switching activity

into account [14], [16], [17], [19], [20], the problem is that

these methods are not widely used or find the switching

activity with simulation data. To find the transition density at

a node without simulation, we need to find the probability of

the signal changing. In this paper, we compute the probability

using LUT truth table values. This computed probability

propagates then further to the rest of the connecting nodes,

as explained in Section IV.

III. GLITCH AMPLIFICATION ATTACKS

A. Principle/Theory

In a synchronous design, the output of a flip-flop can at

maximum change its state once each clock cycle, hence,

resulting in an activity factor of 1
2 the clock frequency. For

example, when the output of a flip-flop is fed back to the

input through an inverter, then the loop will have an activity

factor equal to half of the clock frequency. However, with

different propagation delays combined with the evaluation of

Boolean functions at combinatorial primitives on an FPGA (in

this paper, we only consider LUTs, but the principle would

also hold for other primitives such as DSP blocks), glitches

may be generated as shown in Fig. 1. This fact is widely

known, and a good designer usually reduces the glitching

effect by either pipelining or avoiding flipping multiple inputs

of a combinatorial logic block at the same time (e.g., using

Gray codes for counters). Depending on the number of inputs

N , the output activity factor can reach up to the maximum

of N
2 times the input’s activity factor. For example, in the

implementation of a 6-input XOR gate in Fig. 1, the output

of the T flip-flop has an activity of 1
2 , which is driven to all

inputs of the XOR gate but routed with different latencies.

This results in an activity factor of 6 × 1
2 = 3. This means

that the XOR output toggles three times faster than the clock.

Based on that principle, an attacker can create an acyclic

circuit that meets timing constraints and appears unsuspicious,

but that can generate a substantial switching activity and can

draw an excessive amount of power. Using increased activity

factor through glitch amplification is a way to perform power-

hammering when the maximum clock frequency usable for an

attack is somewhat limited (as commonly the case on FPGA

Cloud instances [21]).

B. Attack Implementation

Glitch amplification attacks are comprised of two parts: the

glitch generator and the power-burning network (See Fig. 1).

More resources can be used on either part to make the other

part less resource-intensive and more hidden.

The glitch generator is a standard T flip-flop with a delay

chain and a wide-input XOR. In practical (Trojan) attacks,

this may be controlled by some trigger logic. In our attack,

we operate a T flip-flop at 200MHz frequency and connect

its output to a delay chain followed by a 6-input XOR. By

adjusting latencies of the physical implementation, this results

in an activity factor of 3 at the output signal of the XOR

gate. Consequently, the output of the XOR can reach 3 times

the clock frequency (in our example, 600MHz). Please note

that much faster glitch frequencies can be generated by using

well-tuned networks of XOR gates.

The power-burning network is built of wires running all

over the FPGA fabric. The glitch generator is not the primary
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power consumption source itself. Instead, the wires and com-

ponents along the routing paths of the power-burning network
are. This leads to the fact that by using a few logic primitives

and redundant routing resources, a malicious circuit can be

stealthily inserted without being obviously noticed.

IV. MITIGATION STRATEGY

A. FPGADefender flow

For glitch-based power-hammering, bitstreams should be

scanned before they get loaded into the FPGA. The scan could

alternatively be performed at the netlist level, but a test op-

erating on the final configuration bitstream has the advantage

that it would even catch malicious circuits implanted during

bitstream generation or after.

In our assumed scenario, FPGADefender would protect

some partial regions in a reconfigurable FPGA-based system.

An incoming configuration bitstream is at first translated by an

external tool (BitMan [22]) into a netlist graph. This graph,

together with the virus signatures, allows FPGADefender to

perform the scan. The signatures can be plugged into the

scanner engine with different configuration options to tune the

scanner for different problems and FPGA boards.

B. Detecting glitch-based power-hammering circuits

We detect malicious circuits that draw excessive power

through glitches by finding the transition density discussed

in Section II. For each LUT table, we compute the probability

that a single input change will cause the LUT output to switch.

That probability will be used while traversing through the

netlist to determine the transition density of individual wire

segments of paths in the netlist graph.

We compute the LUT’s output change probability with the

following steps. First, we toggle all of the possible input values

and then record the number of times the output changed.

Second, we divide the result by the theoretical maximum

number of output changes C that an n-input LUT can have:

C = n× 2n (2)

That theoretical maximum is seen when each input signal’s

arrival also toggles the output. The formula multiplies the

number of possible input encodings by n since the LUT input

value can change x times when each of the input bits arrive

one by one. If all of those input state transitions result in the

output value changing, then we know that the LUT has a 100%

probability that the output value will be toggled once one of

the input values changes. Furthermore, we can deduce that the

LUT is implementing either an XOR or an XNOR function.

We use Equation (2) to incorporate that physical LUTs can

be underutilized (e.g., a LUT6 may implement a 4-input logic

gate). We, therefore, use the PyEDA Espresso [23] library

to minimize the LUT truth-table to find the number of used

LUT inputs. The minimization also considers constant values.

For instance, Vivado is using a LUT configured to 0 in case

a logical ‘0’ is needed. Therefore whenever a constant is

connected to a LUT, the corresponding input will be skipped

for the glitch score computation.

TABLE I
GLITCH AMPLIFICATION POWER-HAMMERING ATTACK ON ULTRA96

BOARD CLOCKED AT 200MHZ. THE VIVADO POWER ESTIMATOR IS SET

TO DEFAULT MODE.

Designs
Description

Activity
Factor

Vivado Power
Estimator (W)

Measured Board
Power (W)

Static Output 0 1.963 4.026
Route Through 0.5 1.964 9.394
2-input XOR 1.0 1.965 10.858
3-input XOR 1.5 1.966 11.834
4-input XOR 2.0 1.967 12.200
5-input XOR 2.5 1.968 crashed
6-input XOR 3.0 1.969 crashed

With the LUT output change probabilities found, we tra-

verse the netlist starting from each flip-flop until reaching

another flip-flop or an antenna. During this process, if a LUT

node is passed, the number of times the wire can change its

output is multiplied by the chance that the output would flip

on an input change. The transition density is computed by

summing up the probabilities of the individual wires.

The initial transition density of a wire is set to 1. For

catching malicious designs, we assume a worst-case scenario

where each flip-flop toggles at each clock cycle. We also

accumulate the transition density values up, assuming that

glitches get amplified according to LUT functions without

considering effects that may cancel out glitches.

In this paper, we are not weighting wires and LUTs in the

sense that the elements of the physical implemented netlist

have a different power consumption when being toggled.

V. EVALUATION

A. Attack on Xilinx UltraScale+ FPGA

Our experiments are conducted on an Ultra96 board

equipped with a Zynq UltraScale+ MPSoC ZU3EG. We filled

the bottom row of the FPGA with 47 identical glitch genera-
tors (with little variations in the corners of the chip) using

in total 0.03% of the flip-flops and 0.8% of the available

LUTs. Glitching signals are connected to long routing paths,

which are anchored using transparent latches. These latches

make up the majority of flip-flops reported in Table II. We

implemented the attack as shown in Figure 1 with about 200

ps latency increments between the LUT inputs. For the power

burning network, we use long deep paths instead of high fan-

out nets. This hinders the Xilinx vendor tool detecting the

power-hammers through reported high fan-out nets.

In order to tune the glitching, we changed the generator’s

output behavior by setting the LUT6 configuration value.

For instance, by making the outputs constant we deactivate

glitching. Alternatively, the LUTs can just route one toggle

signal through, or they can form XOR gates with a varying

number of inputs (2 to 6) for adjusting hammering strength.

The results of different strengths are shown in Table I. It

should be noted that the Xilinx Power Estimator numbers are

reported for the FPGA fabric itself, whereas the measured

board power is also including the power consumption of other

off-chip components (e.g., regulators, memory chips, etc.).

When we increase the activity factor, the power ramps up until

it eventually crashes the design (when reaching XORs with 5
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or 6-inputs). Our attack design is not optimized and stronger

glitching should be well possible. Nonetheless, even just 0.8%
of the LUTs and 25% routing resources are sufficient to crash

the FPGA. Moreover, even the designs that do not crash the

FPGA can still cause malicious behavior as the power supply

may have no headroom for operating other modules.

B. Evaluation of FPGADefender

We evaluated FPGADefender by scanning 19 designs from

different application domains and two malicious designs. All

of the benchmark designs except FPGA Miner [24] are con-

strained to a region which takes up to a sixth of the whole

fabric resources. We used FPGADefender with the new virus

signature to compute the overall switching activity of the

design (given as a bitstream encoded netlist).

From Table II, we can see that the benchmark designs have

lower overall switching activity than the malicious design. The

SHA3 accelerator stands out because it uses extensively wide

XOR functions (which results in huge activity factors) and bit-

shuffling operations (which results in high wire utilization).

Moreover, this particular SHA3 implementation is unrolled

and not well-pipelined. Due to our approach considering a

worst case scenario for computing the activity sum, the wide

XOR functions indicate a level of switching that is larger that

what is possible when running the circuit on an FPGA.

The second last entry in Table II is the same design as the

glitching design, but with the LUT functions changed from

XOR to routing though the first input, as described in the

previous section. Thus in the pass through mal design, the

non-glitch amplified signal propagation causes the scanner to

evaluate its switching activity count to be four times less as

expected from the design using glitch generation (XOR6).

A vital factor to emphasize with these results is that the

scanner model assumes that the inputs change every rising

clock edge and that the glitches always propagate through the

entire combinatorial path without canceling out effects. These

assumptions are not accurate in real scenarios as not all flip-

flop values change every clock cycle, and some glitches cancel

out if the pulse-width of the glitch is not large enough.

As a result, the switching activity values for wire segments

have been capped to 20 as we anticipate that wire segments on

the ZU3EG will not switch more often than a rate equivalent to

4GHz. Thus we can spot the malicious design, which has the

highest activity sum out of all of the other designs. The exact

threshold mark when a design has to be considered malicious

still has to be explored, and the model needs to get improved

to handle routing delays such that glitch canceling-out is taken

into consideration.

VI. CONCLUSION

With this paper, we contribute to a recent trend of research

being undertaken in the field of FPGA hardware security. We

demonstrated that glitch amplification, which has not been

studied for malicious circuit designs before, can be used to

draw excessive levels of power. Our experiments have proven

that an Ultra96 FPGA board can be crashed by using less

TABLE II
EVALUATION RESULTS FOR THE MALICIOUS DESIGN AND OTHER

BENCHMARKING CIRCUITS.

Name Activity Sum LUT % FF % Wires %

FPGA Miner [24] 693, 023.75 5.12 3.59 2.02

RISC-V CPU [25] 199, 960.90 5.55 1.32 0.94

MIPS CPU [26] 301, 952.44 6.44 1.00 0.95

I2C [27] 13, 208.40 0.51 0.14 0.07

SPI [27] 69, 865.90 1.63 0.23 0.21

PRNG [27] 11, 490.73 0.40 0.07 0.05

BCD Adder [27] 5, 431.179 0.11 0.06 0.02

Cordic [27] 120, 376.75 2.14 0.67 0.28

8b10b EncDec [27] 4, 348.80 0.12 0.03 0.02

RS232 UART [27] 5, 107.70 0.17 0.07 0.02

Stepper Motor [27] 2, 724.50 0.12 0.04 0.01

Parallel Scrambler [27] 12, 432.11 0.11 0.03 0.01

CAN Controller [27] 64, 168.29 2.14 0.45 0.31

AES [28] 223, 778.39 6.95 0.40 0.68

DES [28] 27, 046.00 0.46 0.09 0.04

TRNG [28] 71, 625.96 1.76 0.11 0.16

SHA3 [29] 5, 421, 767.16 15.13 1.62 4.94

pass through mal 1, 888, 902.00 0.80 44.57 25.46

Malicious design (XOR6) 7, 518, 387.00 0.80 44.57 25.46

than one percent of the available LUTs and a quarter of the

wires. In that case, we could create an increase of dynamic

power consumption of about 10W (measured on the 12V

board supply rail). With this, we can estimate how much

more power could be drawn with an Alveo U250 datacenter

card, which provides 22× more capacity (in terms of LUTs)

and that has a total thermal power budget of 225W (which

also powers four DDR memory modules). Considering that

the VU11P of the Alveo card is produced using the same

processing technology as the ZU3EG of the Ultra96 is and

that both FPGAs have an identical fabric architecture, the

here presented power-hammering circuit could very likely

crash that board. Furthermore, on Amazon AWS F1 instances

(featuring a Xilinx VU9P FPGA), power is limited to below

100W, and our power-hammering circuit passes all mandatory

checks to be deployed. Therefore this attack is mountable on

AWS F1 instances with the corresponding impact.

This work completes other work that is focusing on self-

oscillating designs only. Furthermore, with the new glitch

amplification detection functions added to FPGADefender

(available at: [13]), the tool is now providing a more complete

solution for mitigating power-hammering (and side-channel)

attacks. The tool thus would enable a cloud service provider to

offer FPGA-as-a-Service models where users can even upload

bitstreams (rather than netlists only, as standard practice to-

day). For future work, the effect of tuning different parameters

of this attack will be studied to make the scans more accurate.
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